95 research outputs found

    Genetic correlations between diabetes and glaucoma: an analysis of continuous and dichotomous phenotypes

    Get PDF
    Purpose: A genetic correlation is the proportion of phenotypic variance between traits that is shared on a genetic basis. Here we explore genetic correlations between diabetes- and glaucoma-related traits.Design: Cross-sectional study.Methods: We assembled genome-wide association study summary statistics from European-derived participants regarding diabetes-related traits like fasting blood sugar (FBS) and type 2 diabetes (T2D) and glaucoma-related traits (intraocular pressure (IOP), central corneal thickness (CCT), corneal hysteresis (CH), corneal resistance factor (CRF), cup-disc ratio (CDR), and primary open-angle glaucoma (POAG)). We included data from the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database, the UK Biobank and the International Glaucoma Genetics Consortium. We calculated genetic correlation (rg) between traits using linkage disequilibrium score regression. We also calculated genetic correlations between IOP, CCT and selected diabetes-related traits based on individual level phenotype data in two Northern European population-based samples using pedigree information and Sequential Oligogenic Linkage Analysis Routines (SOLAR).Results: Overall, there was little rg between diabetes- and glaucoma-related traits. Specifically, we found a non-significant negative correlation between T2D and POAG (rg=-0.14; p=0.16). Using SOLAR, the genetic correlations between measured IOP, CCT, FBS, fasting insulin and hemoglobin A1c, were null. In contrast, genetic correlations between IOP and POAG (rg ≥0.45; p≤3.0E-04) and between CDR and POAG were high (rg =0.57; p=2.8E-10). However, genetic correlations between corneal properties (CCT, CRF and CH) and POAG were low (rg range: -0.18 - 0.11) and non-significant (p≥0.07).Conclusion: These analyses suggest there is limited genetic correlation between diabetes- and glaucoma-related traits

    DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudoexfoliation syndrome is a major risk factor for glaucoma in many populations throughout the world. Using a U.S. clinic-based case control sample with broad ethnic diversity, we show that three common SNPs in LOXL1 previously associated with pseudoexfoliation in Nordic populations are significantly associated with pseudoexfoliation syndrome and pseudoexfoliation glaucoma.</p> <p>Methods</p> <p>Three LOXL1 SNPs were genotyped in a patient sample (206 pseudoexfoliation, 331 primary open angle glaucoma, and 88 controls) from the Glaucoma Consultation Service at the Massachusetts Eye and Ear Infirmary. The SNPs were evaluation for association with pseudeoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open angle glaucoma.</p> <p>Results</p> <p>The strongest association was found for the G allele of marker rs3825942 (G153D) with a frequency of 99% in pseudoexfoliation patients (with and without glaucoma) compared with 79% in controls (p = 1.6 × 10<sup>-15</sup>; OR = 20.93, 95%CI: 8.06, 54.39). The homozygous GG genotype is also associated with pseudoexfoliation when compared to controls (p = 1.2 × 10<sup>-12</sup>; OR = 23.57, 95%CI: 7.95, 69.85). None of the SNPs were significantly associated with primary open angle glaucoma.</p> <p>Conclusion</p> <p>The pseudoexfoliation syndrome is a common cause of glaucoma. These results indicate that the G153D LOXL1 variant is significantly associated with an increased risk of pseudoexfoliation and pseudoexfoliation glaucoma in an ethnically diverse patient population from the Northeastern United States. Given the high prevalence of pseudooexfoliation in this geographic region, these results also indicate that the G153D LOXL1 variant is a significant risk factor for adult-onset glaucoma in this clinic based population.</p

    Are we ready for genetic testing for primary open-angle glaucoma?

    Get PDF
    Following a dramatic reduction in the cost of genotyping technology in recent years, there have been significant advances in the understanding of the genetic basis of glaucoma. Glaucoma patients represent around a quarter of all outpatient activity in the UK hospital eye service and are a huge burden for the National Health Service. A potential benefit of genetic testing is personalised glaucoma management, allowing direction of our limited healthcare resources to the glaucoma patients who most need it. Our review aims to summarise recent discoveries in the field of glaucoma genetics and to discuss their potential clinical utility. While genome-wide association studies have now identified over ten genes associated with primary open-angle glaucoma (POAG), individually, variants in these genes are not predictive of POAG in populations. There are data suggesting some of these POAG variants are associated with conversion from ocular hypertension to POAG and visual field progression among POAG patients. However, these studies have not been replicated yet and such genetic testing is not currently justified in clinical care. In contrast, genetic testing for inherited early-onset disease in relatives of POAG patients with a known genetic mutation is of clear benefit; this can support either regular review to commence early treatment when the disease develops, or discharge from ophthalmology services of relatives who do not carry the mutation. Genetic testing for POAG at a population level is not currently justified

    Common Genetic Variants near the Brittle Cornea Syndrome Locus ZNF469 Influence the Blinding Disease Risk Factor Central Corneal Thickness

    Get PDF
    Central corneal thickness (CCT), one of the most highly heritable human traits (h2 typically>0.9), is important for the diagnosis of glaucoma and a potential risk factor for glaucoma susceptibility. We conducted genome-wide association studies in five cohorts from Australia and the United Kingdom (total N = 5058). Three cohorts were based on individually genotyped twin collections, with the remaining two cohorts genotyped on pooled samples from singletons with extreme trait values. The pooled sample findings were validated by individual genotyping the pooled samples together with additional samples also within extreme quantiles. We describe methods for efficient combined analysis of the results from these different study designs. We have identified and replicated quantitative trait loci on chromosomes 13 and 16 for association with CCT. The locus on chromosome 13 (nearest gene FOXO1) had an overall meta-analysis p-value for all the individually genotyped samples of 4.6×10−10. The locus on chromosome 16 was associated with CCT with p = 8.95×10−11. The nearest gene to the associated chromosome 16 SNPs was ZNF469, a locus recently implicated in Brittle Cornea Syndrome (BCS), a very rare disorder characterized by abnormal thin corneas. Our findings suggest that in addition to rare variants in ZNF469 underlying CCT variation in BCS patients, more common variants near this gene may contribute to CCT variation in the general population

    Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

    Get PDF
    Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma

    Overexpression of Myocilin in the Drosophila Eye Activates the Unfolded Protein Response: Implications for Glaucoma

    Get PDF
    Glaucoma is the world's second leading cause of bilateral blindness with progressive loss of vision due to retinal ganglion cell death. Myocilin has been associated with congenital glaucoma and 2-4% of primary open angle glaucoma (POAG) cases, but the pathogenic mechanisms remain largely unknown. Among several hypotheses, activation of the unfolded protein response (UPR) has emerged as a possible disease mechanism.We used a transgenic Drosophila model to analyze whole-genome transcriptional profiles in flies that express human wild-type or mutant MYOC in their eyes. The transgenic flies display ocular fluid discharge, reflecting ocular hypertension, and a progressive decline in their behavioral responses to light. Transcriptional analysis shows that genes associated with the UPR, ubiquitination, and proteolysis, as well as metabolism of reactive oxygen species and photoreceptor activity undergo altered transcriptional regulation. Following up on the results from these transcriptional analyses, we used immunoblots to demonstrate the formation of MYOC aggregates and showed that the formation of such aggregates leads to induction of the UPR, as evident from activation of the fluorescent UPR marker, xbp1-EGFP. CONCLUSIONS / SIGNIFICANCE: Our results show that aggregation of MYOC in the endoplasmic reticulum activates the UPR, an evolutionarily conserved stress pathway that culminates in apoptosis. We infer from the Drosophila model that MYOC-associated ocular hypertension in the human eye may result from aggregation of MYOC and induction of the UPR in trabecular meshwork cells. This process could occur at a late age with wild-type MYOC, but might be accelerated by MYOC mutants to account for juvenile onset glaucoma

    Assessing the Association of Mitochondrial Genetic Variation With Primary Open-Angle Glaucoma Using Gene-Set Analyses

    Get PDF
    PURPOSE: Recent studies indicate that mitochondrial proteins may contribute to the pathogenesis of primary open-angle glaucoma (POAG). In this study, we examined the association between POAG and common variations in gene-encoding mitochondrial proteins. METHODS: We examined genetic data from 3430 POAG cases and 3108 controls derived from the combination of the GLAUGEN and NEIGHBOR studies. We constructed biological-system coherent mitochondrial nuclear-encoded protein gene-sets by intersecting the MitoCarta database with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We examined the mitochondrial gene-sets for association with POAG and with normal-tension glaucoma (NTG) and high-tension glaucoma (HTG) subsets using Pathway Analysis by Randomization Incorporating Structure. RESULTS: We identified 22 KEGG pathways with significant mitochondrial protein-encoding gene enrichment, belonging to six general biological classes. Among the pathway classes, mitochondrial lipid metabolism was associated with POAG overall (P = 0.013) and with NTG (P = 0.0006), and mitochondrial carbohydrate metabolism was associated with NTG (P = 0.030). Examining the individual KEGG pathway mitochondrial gene-sets, fatty acid elongation and synthesis and degradation of ketone bodies, both lipid metabolism pathways, were significantly associated with POAG (P = 0.005 and P = 0.002, respectively) and NTG (P = 0.0004 and P < 0.0001, respectively). Butanoate metabolism, a carbohydrate metabolism pathway, was significantly associated with POAG (P = 0.004), NTG (P = 0.001), and HTG (P = 0.010). CONCLUSIONS: We present an effective approach for assessing the contributions of mitochondrial genetic variation to open-angle glaucoma. Our findings support a role for mitochondria in POAG pathogenesis and specifically point to lipid and carbohydrate metabolism pathways as being important
    corecore